
A case study on modeling shared memory access effects during performance
analysis of HW/SW systems

Marcello Lajolo �

Politecnico di Torino
Torino, Italy

lajolo@polito.it

Anand Raghunathan
NEC C&C Research Labs

Princeton, NJ, USA
anand@ccrl.nj.nec.com

Sujit Dey�

UC San Diego
La Jolla, CA, USA

dey@ece.ucsd.edu

Luciano Lavagno
Politecnico di Torino

Torino, Italy
lavagno@polito.it

Alberto Sangiovanni Vincentelli
University of California at Berkeley

Berkeley, CA, USA
alberto@eecs.berkeley.edu

Abstract

Behavioral simulation with timing annotations derived
from performance modeling and analysis is a promising
alternative for use in evaluating system-level design trade-
offs [1, 2]. The accuracy of such approaches is determined
by how well the effects of various HW and SW architec-
tural features, like the Real Time Operating System (RTOS),
shared memories and buses, HW/SW communication mech-
anisms, etc are modeled at this level.
We present a study of the effects of shared memory buses
during system-level performance analysis in the POLIS co-
design environment, using the example of a TCP/IP Net-
work Interface System. We demonstrate how the effects of
the memory arbiter and shared memory bus can be mod-
eled efficiently at the behavioral level, and used to evaluate
various design tradeoffs. Experimental results demonstrate
that modeling these effects can significantly increase the
accuracy of system-level performance estimates.

1 Introduction

Efficient exploration of system-level design tradeoffs de-
pends heavily on the availability of fast and accurate esti-
mation and modeling techniques, for metrics such as perfor-
mance, power, and cost, to guide various design decisions.
Various techniques have been proposed for performance
analysis of hardware [3, 4, 5] and software [6, 7]. In this pa-
per, we focus on performance modeling for mixed HW/SW
embedded systems. Hardware-software co-simulation [8]
remains the most popular approach to performance estima-
tion for such systems. There are several flavors of hardware-

�This work was started when the authors were at NEC C&C Research
Labs, Princeton, NJ

software simulation, with varying degrees of efficiency and
accuracy. The techniques that involve simulating (RTL)
hardware models of the embedded processor(s) along with
the models of the hardware components tend to be the most
accurate, but are also the slowest. Moreover, detailed hard-
ware models for embedded processors are often not available
to system designers. A popular alternative is to use instruc-
tion set simulators (ISS) to simulate the software compo-
nents of the system, and HDL simulators to simulate the
hardware components. Instruction set simulators may be cy-
cle and bit-accurate, or may abstract out some architectural
details of the target embedded processor such as pipelines
and superscalar ordering for efficiency. The efficiency of
this approach may still be limited due to the (assembly or
binary instruction) level of detail in software simulation, and
the communication overhead required to synchronize the ex-
ecution of the ISS and hardware simulator. While there has
been some work on attempting to reduce the synchroniza-
tion overhead [9, 10], such approaches are still not very
efficient for use in exploring tradeoffs during HW/SW co-
design. Bus functional models of the embedded processors
may be used to exercise the hardware components without
needing to run an ISS concurrently, however, only the hard-
ware functionality is simulated in this approach, making it
more suitable for validation of the hardware and HW/SW in-
terface. Using an interface-based design methodology [11]
helps separate the behavior of the components from their
interface protocols, and allows the use of time and space
abstractions for efficient validation and analysis.

Behavioral simulation coupled with timing annotations
based on performance modeling techniques offers a promis-
ing alternative for use in evaluating system-level design
tradeoffs [12, 2]. In such approaches, behavioral models
of the software components are simulated, and performance
estimates for blocks of code are used to annotate timing in-
formation. In the POLIS co-design environment [12], a ho-

mogeneous behavioral representation is used for hardware
as well as software components. The behavioral simulation,
analysis, and evaluation is performed using the PTOLEMY
heterogeneous simulation environment [13]. Timing infor-
mation for software modules during simulation is main-
tained based on performance estimates derived using the
technique presented in [1]. The accuracy of behavioral sim-
ulation based approaches is determined by how well the
effects of various HW and SW architectural features, like
the Real Time Operating System (RTOS), shared memo-
ries and buses, HW/SW communication mechanisms, etc
are modeled at this level. For example, the effects of the
RTOS are modeled in POLIS during performance analysis,
and the user can select between several scheduling policies
(e.g. round-robin, static priority based, etc.) and evaluate
their impact on the system performance.

In this paper, we focus on modeling the effects of shared
memory buses during system-level performance analysis,
using the POLIS co-design environment. The performance
of several designs, including graphics and telecommunica-
tions applications, may be dominated by memory accesses,
making it important to accurately model memory-related ef-
fects during system-level design exploration. Using the ex-
ample of a TCP/IP Network Interface System, we illustrate
how the effects of the memory arbiter and shared memory
bus can be modeled efficiently at the behavioral level, and
used to evaluate various design tradeoffs. Experimental re-
sults are presented to indicate that ignoring the effects of the
shared memory access bus would have led to significantly
incorrect performance estimates, and possibly incorrect de-
sign decisions.

The paper is organized as follows. Section 2 provides
some background about the TCP/IP Network Interface Sys-
tem used for our study, and the modelling of the system in
the POLIS co-design environment. Section 3 presents the
results of the evaluation of the effects of the shared memory
bus on several design tradeoffs, and section 4 concludes the
paper and discusses future work.

2 The TCP/IP System Model

This section provides some background relating to the
TCP/IP system, and presents the model used for the system
in the POLIS environment.

2.1 Background

A TCP packet consists of three parts:

� An IP header containing, among other fields, the source
and destination IP address. The IP header is usually,
but not always, 20 bytes long,

� A TCP header, containing TCP-specific information.
This is usually another 20 bytes,

� The payload, a variable number of bytes (possibly odd)
up to a maximum of 65535 bytes.

The TCP/IP protocol requires various tasks to be performed
on incoming and outgoing packets, and to maintain the sys-
tem state. We focus on the evaluation of a dedicated hard-
ware implementation for one of the tasks that is part of the
TCP layer - checksum computation. The factors that make
this task a good candidate for hardware implementation are
explained later.

The IP header is protected by its own 16 bits checksum,
that is computed in the IP layer. Since this is computed over
such a small number of bytes, it is (relatively) cheap even
in software. The TCP data has a 16 bits checksum, carried
in the TCP header. It is computed over:

� The 8 bytes of IP address and 16 bits of length field in
the IP header,

� The TCP header excluding the 16 bits checksum,

� The payload, taken 16 bits at a time, padding the last
byte as NULL if required.

The checksum treats the bytes in pairs, taking each pair
of bytes as a 16 bits integer in big-endian byte order. Each
16 bits number is added in to the temporary result using un-
signed 32 bit integer arithmetic. To obtain the final check-
sum, the most significant 16 bits of the temporary result
are added to the least significant 16 bits, and the result is
XOR’ed with 0xffff .

The checksum computation is particularly inefficient on
little-endian processors because the big-endian 16 bit num-
bers have to be generated by shift-or logic. Also, it is
basically a repetitive operation over potentially large vol-
umes of data and contains several bit-level operations. The
above factors make the checksum computation a good can-
didate for hardware implementation. We attempted to model
parts of the TCP/IP system relating to the checksum com-
putation using POLIS with the motivations of quantitatively
evaluating (i) the performance improvement obtained by im-
plementing the checksum computation in HW, and (ii) the

CREATE_PACK
QUEUE

PACKET
CHECKSUMIP_CHECK

ARBITER

NETWORK

MEMORY

SHARED

Figure 1. The modeled TCP/IP sub-system

2

possible adverse effects of SW and HW processes conflict-
ing for accessing the shared packet memory. However, we
believe that the effects of shared memory access on system-
level performance evaluation that we present are applicable
to any HW/SW system, and not limited to the design exam-
ple or HW/SW configuration used for this study.

2.2 Modeling the TCP/IP subsystem in POLIS

Figure 1 shows the sub-system that has been described
in POLIS for our case study. The system was modeled
as ten interconnecting CFSMs, each specified in ESTEREL,
and their interconnection was described graphically with the
Ptolemy user interface.

For incoming packets, the module create pack re-
ceives a packet from the lower layer (in this case, the IP
layer), and stores it in the shared memory. When it finishes,
it sends the information about the starting address of the
packet in memory, the number of bytes and the checksum
header to a queue (packet queue). From this queue,
the module ip check retrieves a new packet, overwrites
parts of the checksum header (which should not be used
in the checksum computation) with 0s, and signals to the
checksum process that a new packet can be checked for
checksum consistency. The checksum process performs
the core part of the checksum computation, accessing the
packet in memory through the arbiter and accumulating the
checksum for the packet body. When it is done, it sends the
computed 16-bit checksum back to the ip check process,
which then compares the computed checksum with the in-
coming transmitted checksum, and flags an error if they do
not match. The flow for outgoing packets is similar, but in
the reverse direction, and there is no need for comparison of
the final checksum.

2.3 Behavioral Model of the Memory Bus and
Arbiter

In the original behavioral description that was used to
validate the functionality of the processes, memory accesses
were modeled by access to a global array, using a C func-
tion call from Esterel, i.e. the module arbiter shown in
Figure 1 was not present. However, as we show in Sec-
tion 3, using the same model for performance evaluation
suffers from the drawback of ignoring effects such as shared
memory access conflicts, block access mode (DMA), etc.
Hence, we described a behavioral model of the shared bus
and memory arbiter (shown as module arbiter in Fig-
ure 1) to model the effect of the controller (arbiter) of the
shared memory bus. The arbiter module is the only
module that can access the shared memory: it receives re-
quests from the processes create pack, ip check and
checksum, and is responsible for deciding which module
is given access to the memory. The functional model of the

arbiter is such that the access priority scheme can be eas-
ily changed or parametrized. For example, we may specify
that in the case of simultaneous requests, the arbiter should
give higher priority to checksum and lower priority to
create pack.

In our system, the primary functions of the arbiter are:
(i) to avoid multiple components simultaneously driving the
bus in an attempt to access memory using a simple request-
grant protocol, (ii) to resolve simultaneous access attempts
based on priorities that can be specified by the designer,
(iii) to allow components to request dedicated access of
the memory bus for a certain number of bus cycles (block
access mode or DMA mode). We have created a behavioral
model of the arbiter and shared memory bus in Esterel that
is called arbiter in Figure 1. The arbiter process has
a dedicated interface to each of the processes that require
to access memory, that can be similar to, or an abstraction
of, the shared memory bus interface. In addition, each
process that accesses memory is enhanced to include an
arbiter interface. For example, the signals that interface
the arbiter process to the checksum process are shown
in Figure 2. The interface consists of a memory access

req_chk

addr_chk
nword_chk

rnw_chk

grant_chk

din_chk
dout_chk

ARBITER

CHECK-
 SUM

A
rbiter I/F

Figure 2. The interface of the arbiter model

request signal req chk on which the checksum process
generates an event to indicate that it would like to access
memory. The starting address is placed on signal addr chk,
and a block size signal nword chk is used (in DMA or
block access mode) to convey the number of bus cycles of
dedicated bus access requested. The arbiter generates and
event on the signal grant chk to indicate that the request
has been granted. In addition, there are data in, data out,
and read/write signals to the memory.

A part of the Esterel specification of the arbiter pro-
cess is shown in Figure 3. Signals req create, req ip, and
req check represent the requests for access to the memory
bus from the create pack, ip check, and checksum
processes, respectively. Note that the behavior of the arbiter
is described as an infinite loop which immediately encloses
a set of nested if � then � else statements that test for
the presence of events on the various memory access re-
quest signals. The code within this set of if � then � else

statements represents the actions to be taken for processing
a memory access request from the corresponding module.
Figure 3 only shows the code for processing a memory ac-
cess request from the checksum process, the parts for han-

3

....
loop

if (?req_create=1) then
....
.... % grant access to create_pack

elsif (?req_ip=1) then
....
.... % grant access to create_pack

elsif (?req_chk=1) then
i:=?addr_chk;
emit grant_chk;
repeat ?nword_chk times

if (?rnw_chk=false) then
await din_chk; % memory write
emit addr(i); emit din(?din_chk);
emit rnw(?false);

else
emit addr(i); % memory read
emit din(?din_chk);
emit rnw(?true);
await din_mem;
emit dout_chk(?din_mem);

end if;
i:=i+1;

end repeat;
emit res_chk;

end if;
end loop;
....

Figure 3. Esterel model of the arbiter pro-
cess

dling requests from other modules are similar. The priorities
given by the arbiter to requests from the various processes
are determined by the order in which the request signals are
tested in the nested if � then � else statements. For ex-
ample, the code shown in Figure 3 gives highest priority to
requests from create pack, since the signal req create

is tested for an event first. Thus, changing the memory ac-
cess priorities of the processes can be achieved by simply
re-ordering the testing of the access request signals in the
behavioral arbiter model.

We would like to reiterate that the behavioral arbiter
model shown above is not part of the system specification -
it was added to model the effects of the shared memory bus
and memory arbiter during behavioral level performance
simulation. However, during the performance simulation, it
is treated just like any other module. The implementation
of the arbiter process is specified to be HW, because it
allows us finer control of its timing properties. The number
of memory access cycles, and processing time taken by the
arbiter, can be easily modeled using await tick statements
appropriately inserted in the behavioral model.

3 Performance Simulation and Experimental
Results

In the POLIS environment, the system specification,
which may consist of a PTOLEMY netlist that describes the
interconnection of the functional components or modules
and an Esterel specification that describes the functionality
of each module, is translated into a network of co-design
finite state machines (CFSMs), which are extended FSMs
with asynchronous buffered communication. Performance
analysis is carried out using the heterogeneous simulation
environment offered by PTOLEMY [13]. The performance
simulation is based on a C model of each CFSM that is
automatically generated, using the hardware/software parti-
tioning specified by the user, the scheduling policy for the
RTOS specified by the user, and a timing model for the target
processor that is derived during a characterization step [12].
We simulated the TCP/IP subsystem with network traffic
that was captured using a profiling tool from an existing
software implementation of the TCP/IP protocol.

We performed several experiments to demonstrate the
value added by our behavioral model of the arbiter and
shared memory bus during system-level design, some of
which we present here.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 10 20 30 40 50 60 70

create_pack

ip_check

checksum

total

P
er

fo
rm

an
ce

 (
C

lo
ck

 C
yc

le
s)

DMA block size

Figure 4. Variation of computation times with
DMA block size

In the first experiment we performed an analysis of the
variation of the processing times for each module as well
as the complete per-packet processing time for the entire
system for various sizes of the DMA block size used for
memory access. For this experiment, the create pack
process was mapped to software running on a MIPS R3000
processor, and the checksum and ip chk processes were
mapped to hardware. Figure 4 shows the variation of (aver-
age) per-packet processing times for the three processes for
a test bench consisting of three packets of length 512, 64,
and 448 bytes, for block sizes of 4, 8, 32, and 64 bytes. The
following conclusions can be drawn from Figure 4:

� As expected, the processing times for all the modules as
well as the total processing time decrease with increas-
ing DMA block size, since the handshaking overhead
required to obtain memory access is amortized over a

4

Table 1. Processing times without memory
conflicts

packet # create pack ip check checksum total
1 513 1101 1088 2702
2 65 149 136 350
3 449 965 952 2366

larger number of data transfers. The decrease is signif-
icant at lower DMA block sizes.

� In addition, the sensitivity of the performance of the
software module (create pack) to DMA block size
is higher, since the time required for handshaking with
the arbiter is much higher for the software module than
for the hardware modules.

Note that it would have been impossible to perform the
above analysis in the absence of the behavioral model of the
shared memory bus and arbiter, since the reported processing
times would be constant for various values of block size.

The next experiment we performed was to evaluate the effect
of memory conflicts due to the shared memory bus on the perfor-
mance of the individual processes as well as the overall system
performance. The performance estimates without and with mem-
ory conflicts are presented in Tables 1 and 2, for a sequence of
three packets (512, 64 and 448 bytes long) that are part of a longer
stream. The performance estimates without memory conflicts were
obtained by not including the arbiter process, and modeling mem-
ory as an array shared between the create pack, ip check
and checksum processes. Access to the shared array is per-
formed using a C function call annotated with a fixed delay to
represent the access time of the memory.

Table 2. Processing times with memory con-
flicts

packet # create pack ip check checksum total
1 513 1617 1538 3688
2 65 218 192 475
3 449 1418 1346 3213

The results indicate that:

� The performance of the create pack process was
not affected by the presence of memory conflicts. This
is because the memory arbiter gives highest priority to
requests from create pack when simultaneous or
pending requests are present.

� The per-packet performance estimates of the
ip check and checksum processes are in error (un-
derestimates) by 46:9% and 41:4%, respectively if
memory conflicts are ignored, and the total perfor-
mance of the system is underestimated by 36:39%

It is clear from the above results that the effects of memory
conflicts due to the use of shared memory and the DMA
block size need to be considered while estimating the per-
formance of HW/SW systems.

4 Conclusions and Future Work

We presented a case study to study the effects of shared
memory buses and arbiters during system-level performance
analysis. Using the case study of a part of a TCP/IP net-
work interface system, we have proposed a methodology to
model the shared memory bus and arbiter at the behavioral
level. We presented experimental results to demonstrate that
ignoring these effects leads to a large error in system-level
performance estimates, and that the effects of some design
tradeoffs cannot be evaluated without modeling memory ef-
fects accurately. We are currently working on automatically
generating the models required to incorporate the effects of
the shared memory bus and memory arbiter during perfor-
mance analysis of HW/SW systems.
Acknowledgements: The authors would like to thank
Leslie French and Toshio Misawa of NEC C&C Research
Labs for providing the software implementation of the
TCP/IP system, and for useful technical discussions.

References
[1] K. Suzuki and A. Sangiovanni-Vincentelli, “Efficient software performancees-

timation methods for hardware/softwarecodesign,” in Proc. Design Automation
Conf., pp. 605–610, June 1996.

[2] B. Tabbara and L. Lavagno and A. Sangiovanni-Vincentelli, “Fast Hardware-
Software Co-simulation Using Software Synthesis and Estimation,” in Proc.
Int. High Level Design Validation and Test Wkshp., pp. 149–156, Nov. 1997.

[3] S. Bhattacharya, S. Dey, and F. Brglez, “Performanceanalysis and optimization
of schedules for conditional and loop-intensive specifications,” in Proc. Design
Automation Conf., pp. 491–496, June 1994.

[4] M. Rahmouni and A. Jerraya, “Formulation and evaluation of scheduling tech-
niques for control flow graphs,” in Proc. European Design Automation Conf.,
Sept. 1995.

[5] S. Dey and S. Bommu, “Performance analysis of a system of communication
processes,” in Proc. Int. Conf. Computer-Aided Design, pp. 590–597, Nov.
1997.

[6] S. Malik, M. Martonosi, and Y. T. S. Li, “Static Timing Analysis of Embedded
Software,” in Proc. Design Automation Conf., pp. 147–152, June 1997.

[7] R. Ernst and W. Ye, “Embeddedprogram timing analysis based on path cluster-
ing and architecture classification,” in Proc. Int. Conf. Computer-Aided Design,
pp. 598–604, Nov. 1997.

[8] J. Rowson, “Hardware/Software Co-Simulation,” in Proc. Design Automation
Conf., pp. 439–440, June 1994.

[9] “Mentor
Graphics Seamless CVE Home Page (http://www.mentorg.com/seamless/).”.

[10] S. Yoo and K. Choi,“Synchronization Overhead Reduction ini Timed Cosimula-
tion,” in Proc. Int. High Level Design Validationand Test Wkshp., pp. 157–164,
Nov. 1997.

[11] J. Rowson, “Interface Based Design,” in Proc. Design Automation Conf.,
pp. 178–183, June 1997.

[12] F. Balarin, M. Chiodo, H. Hsieh, A. Jureska, L. Lavagno, C.Passerone,
A. Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and B. Tabbara,
Hardware-software Co-Design of Embedded Systems: The POLIS Approach.
Kluwer Academic Publishers, Norwell, MA., 1997.

[13] J. Buck, S. Ha, E. Lee, and D. Masserchmitt, “Ptolemy: A framework for
simulating and prototyping heterogeneous systems,” International Journal on
Computer Simulation, Special Issue on Simulation Software Management, Jan.
1990.

5

